Categories
2010

Molecular simulations on the thermal stabilization of DNA  by hyperthermophilic chromatin protein Sac7d, and associated conformational transitions

UD Priyakumar, G Harika, G Suresh

Sac7d belongs to a family of chromosomal proteins, which are crucial for thermal stabilization of DNA at higher growth temperatures. It is capable of binding DNA nonspecifically, and is responsible for the increase in the melting temperature of DNA in the bound form up to 85 °C. Molecular dynamics (MD) simulations were performed at different temperatures on two protein−DNA complexes of Sac7d. Various structural and energetic parameters were calculated to examine the DNA stability and to investigate the conformational changes in DNA and the protein−DNA interactions. Room temperature simulations indicated very good agreement with the experimental structures. The protein structure is nearly unchanged at both 300 and 360 K, and only up to five base pairs of the DNA are stabilized by Sac7d at 360 K. However, the MD simulations on DNA alone systems show that they lose their helical structures at 360 K further supporting the role of Sac7d in stabilizing the oligomers. At higher temperatures (420 and 480 K), DNA undergoes denaturation in the presence and the absence of the protein. The DNA molecules were found to undergo B- to A-form transitions consistent with experimental studies, and the extent of these transitions are examined in detail. The extent of sampling B- and A-form regions was found to show temperature and sequence dependence. Multiple MD simulations yielded similar results validating the proposed model. Interaction energy calculations corresponding to protein−DNA binding indicates major contribution due to DNA backbone, explaining the nonspecific interactions of Sac7d.

Categories
2010

Atomistic Details of the Ligand Discrimination Mechanism of SMK/SAM-III Riboswitch

UD Priyakumar

SAM-III riboswitch, involved in regulating sulfur metabolic pathways in lactic acid bacteria, is capable of differentiating S-adenosyl-l-methionine (SAM) from its structurally similar analogue S-adenosyl-l-homocysteine (SAH). Atomic level understanding of the ligand recognition mechanism of riboswitches is essential for understanding their structure−function relationships in general. In the present study, we have employed molecular dynamics (MD) simulations on five model systems to elucidate the discrimination mechanism adopted by the SAM-III riboswitch that enables differential binding of SAM with respect to SAH. The structures of the binding pocket of the riboswitch and the modes of binding of the adenine moiety of SAM obtained from the MD simulations are similar to the experimental structure. However, MD simulations of the riboswitch−SAH complexes lead to partial unbinding of the ligand and structural changes in the RNA binding pocket. Detailed analyses were performed to examine the structural and energetic factors involved in such a differentiation. The calculations reveal a novel mechanism by which the aptamer domain specifically recognizes the adenine moiety of SAM/SAH, but SAM is better stabilized in the binding pocket due to nonspecific electrostatic interactions involving the sulfonium group. Additionally, the results support less dependence of the ligand conformation in the bound form on the effective binding of SAM to the riboswitch.

Categories
2010

 Structural and energetic determinants of thermal stability and hierarchical unfolding pathways of hyperthermophilic proteins, Sac7d and Sso7d

UD Priyakumar, S Ramakrishna, KR Nagarjuna, SK Reddy

Identification of the structural and energetic determinants responsible for enhancing the stability of proteins is crucial. Hyperthermophilic proteins are naturally occurring proteins that exhibit high thermal stability and are good candidates for the investigation and understanding of structure−stability relationships. Sac7d from Sulfolobus acidocaldarius and Sso7d from Sulfolobus solfactaricus are two homologous hyperthermophilic proteins that were shown to be quite stable at high temperatures. Molecular dynamics simulations at the nanosecond time scale at different temperatures were performed to examine the factors affecting their stability. The three-dimensional structures of these proteins were observed to be similar to the experimental structure at 300 and 360 K but were found to undergo denaturation at 500 K. Both proteins exhibit similar unfolding pathways that correlates well with the calculated intermolecular interaction energies. The differential dynamic behaviors of these molecules at different temperatures were examined. Structural and energetic analysis of the contributions of salt bridges indicates a stabilizing effect at higher temperatures. However, the lifetimes of the salt bridges were found to be quite short, and several new salt bridges formed at 500 K supporting previous studies that the desolvation penalty due to the formation of salt bridges decreases at elevated temperatures. Hydrophobic interactions, which decrease with increase in temperature, were also found to be crucial in the stability of these proteins. Overall, the study shows that a balance among the salt bridge interactions, hydrophobic interactions, and solvent properties is primarily responsible for the high thermal stability of this class of proteins.

Categories
2010

Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch

UD Priyakumar, AD MacKerell Jr,

Riboswitches are RNA-based genetic control elements that function via a conformational transition mechanism when a specific target molecule binds to its binding pocket. To facilitate an atomic detail interpretation of experimental investigations on the role of the adenine ligand on the conformational properties and kinetics of folding of the add adenine riboswitch, molecular dynamics (MD) simulations were performed in both the presence and absence of the ligand. In the absence of ligand, structural deviations were observed in the J23 junction and the P1 stem. Destabilization of the P1 stem in the absence of ligand involves the loss of direct stabilizing interactions with the ligand, with additional contributions from the J23 junction region. The J23 junction of the riboswitch is found to be more flexible and the tertiary contacts among the junction regions are altered in the absence of the adenine ligand; results suggest that the adenine ligand associates and dissociates from the riboswitch in the vicinity of J23. Good agreement was obtained with the experimental data with the results indicating dynamic behavior of the adenine ligand on the nanosecond timescale to be associated with the dynamic behavior of hydrogen bonding with the riboswitch. Results also predict that direct interactions of the adenine ligand with U74 of the riboswitch are not essential for stable binding even though it is crucial for its recognition. The possibility of methodological artifacts and force field inaccuracies impacting the present observations was checked by additional MD simulations in the presence of 2,6-diaminopurine and in the crystal environment.